Keresés


Toplista

Toplista
  • betöltés...

Magántanár kereső

Ha szívesen korrepetálnál, hozd létre magántanár profilodat itt.
Ha diák vagy és korrepetálásra van szükséged, akkor regisztrálj be és írd meg itt, hogy milyen tantárgyban!

Matek

488
Megoldaná valaki ezt a2 felcsit? Koszonom elore is!:)
Jelenleg 1 felhasználó nézi ezt a kérdést.
0
Középiskola / Matematika

Válaszok

2
Ezek a "felcsik" egyszerű másodfokú egyenletek. Mi nem megy?
1

560. (3y-1)²-5(2y+1)²+(6y-3)(2y+1)=(y-1)²
9y²-6y+1-5(4y²+4y+1)+12y²+6y-6y-3=y²-2y+1
9y²-6y+1-20y²-20y-5+12y²+6y-6y-3=y²-2y+1 összevonva:
y²-26y-7=y²-2y+1 mivel mindkét oldalon szerepel y², ezért elhagyható:
-26y-7=-2y+1 rendezve:
-8=24y amiből:
-1/3=y
Ellenőrzés:
baloldal:
[3*(-1/3)-1]²-5[2*(-1/3)+1]²+[6*(-1/3)-3]*[2*(-1/3)+1]=[-3/3-1]²-5[-2/3+1]²+[-6/3-3]*[-2/3+1]=[-2]²-5[1/3]²+[-5]*[1/3]=4-5/9-5/3=36/9-5/9-15/9=16/9
jobboldal.
(-1/3-1)²=(-4/3)²=16/9
A jobb- és a baloldal is 16/9 tehát a megoldás jó!
561. (y+5)*(y+2)-3(4y-3)=(5-y)²
y²+2y+5y+10-12y+9=25-10y+y² összevonva:
y²-5y+19=y²-10y+25, y² mindkét oldalon szerepel tehát elhagyható
-5y+19=-10y+25, rendezve:
5y=6 amiből
y=6/5
Ellenőrzés:
baloldal:
(6/5+5)*(6/5+2)-3(4*6/5-3)=31/5*16/5-3*(24/5-3)=31/5*16/5-3*9/5=496/25-27/5=496/25-135/25=361/25
jobboldal:
(5-6/5)²=(19/5)²=361/25
Mivel a jobb- és a baloldal is 361/25 lett az eredmény jó
1