Keresés


Toplista

Toplista
  • betöltés...

Magántanár kereső

Ha szívesen korrepetálnál, hozd létre magántanár profilodat itt.
Ha diák vagy és korrepetálásra van szükséged, akkor regisztrálj be és írd meg itt, hogy milyen tantárgyban!

Még valaki ennek az exp.egyenlet megoldását letudná nekem irni?

475
a , 10^x + 10^-x =2
b,  6 5^5x+2 = 25 ^ 1/4
Jelenleg 1 felhasználó nézi ezt a kérdést.
0
Középiskola / Matematika

Válaszok

3
a második hatodik gyök alatt van
0

A hatványozás azonossága szerint 10-x=1/10x, tehát:

10x + 1/10x = 2, vezessünk be egy új változót: 10x=t, ekkor az egyenlet:

t + 1/t = 2, szorzunk t-vel:
t²+1=2t, kivonunk 2t-t:
t²-2t+1=0, ennek a megoldása t=1.
Mivel t=10x volt, ezért 1=10x, ennek x=0 a megoldása (hivatkozva a 10x függvény szigorú monotonitására).

Ha jól értem, akkor a második egyenlet ez szeretne lenni:

 5(5x+2) =251/4. Ha így van, akkor emeljük mindkét oldalt 6. hatványra:

5(5x+2)=(251/4)⁶, a jobb oldalon használjuk a hatványozás megfelelő azonosságát, összeszorozzuk a kitevőket, ekkor a jobb oldalon 256/4=253/2 lesz. Írjuk át a jobb oldalt 5-ös alapú hatvánnyá: 253/2=(5²)3/2, újfent használva az azonosságot, 5³ lesz a jobb oldalon, tehát

5(5x+2)=5³, az 5x függvény szigorú monotonitása miatt ezek akkor lesznek egyenlőek, hogyha a kitevők egyenlőek, tehát

5x+2=3, ennek x=1/5 a végeredménye.
1

a)
10x+10-x=2
10x+1/10x=2
(10x)2-2*10x+1=0

Új ismeretlen bevezetése: y=10x

y2-2y+1=0
(y-1)2=0
y=1

Vagy a megoldóképlettel is megoldhatod.

y=10x=1,
ebből az exp. fv. szig. mon. miatt
x=0
Módosítva: 7 éve
0