Keresés

Keresendő kifejezés:

Toplista

Toplista
  • betöltés...

Segítség!

Ahhoz, hogy mások kérdéseit és válaszait megtekinthesd, nem kell beregisztrálnod, azonban saját kérdés kiírásához ez szükséges!

Ballisztikus inga.

124
Sziasztok.
A csatolt képen szereplő feladatot szeretném megoldani. Ebben szeretném a segítségeteket kérni.
Köszönöm szépen.
Jelenleg 1 felhasználó nézi ezt a kérdést.
0
Középiskola / Fizika

Válaszok

3
Találtam egy megoldást:
https://www.geogebra.org/m/WnkbRpR5#material/TXFzMLNN
(Az emelkedési szög állítható)
0

Bongoloé a helyes megoldás!
Módosítva: 6 hónapja
0

Rugalmatlan ütközéskor, amikor a két test "összeragad", akkor nem teljesül az energiamegmaradás, mert az energia egy része arra fordul, hogy deformálja a testeket, meg felmelegíti őket, meg ilyenek.
Csak az impulzusmegmaradást lehet használni!

Kezdetben az impulzus `m_1·v_1`, ebből `v_1` ismeretlen, `m_1=10\ g` (persze `kg`-ra át kell váltani).
Az ütközés után közvetlenül is ugyanannyi az impulzus: `m_1·v_1=(m_1+m_2)·v_2`
A gyakorlatban elég `m_2·v_2`-vel számolni, mert `m_1` elhanyagolható `m_2`-höz képest, nem szoktunk olyan sok tizedessel számolni. Szóval ez a képlet is megfelelő:
(1) `m_1·v_1=m_2·v_2`
(de ha pedáns a tanár, számolj `m_1+m_2`-vel 'm_2' helyett.)

Persze itt már egyik sebességet se tudjuk, de majd kijönnek...

Most visoznt már ütközés után vagyunk, most már deformálódtak a testek, úgy lendül ki az inga. Ekkor már használható az energiamegmaradás:
`m_2·g·h=1/2·m_2·v_2^2`
(megint csak `m_2`-t írtam, de igaziból `m_1+m_2` kellene. Mindegy, úgyis kiesik)
`g·h=1/2·v_2^2`
(2) `v_2=sqrt(2gh)`

A `h` magasság persze az, hogy milyen magasra emelkedett az inga:
(3) `h=r-r·cos "4,2"°`

Számold ki (3)-t (`r` persze az inga hossza; ugye érted a koszinuszos képletet?), aztán (2)-t, végül (1) alapján `v_1`-et.
2