Keresés

Keresendő kifejezés:

Toplista

Toplista
  • betöltés...

Segítség!

Ahhoz, hogy mások kérdéseit és válaszait megtekinthesd, nem kell beregisztrálnod, azonban saját kérdés kiírásához ez szükséges!

Egy ξ diszkrét valószínűségi változó lehetséges értékei 1, 2, . . . , 10, eloszlása P(ξ = k) = c · k, k = 1, 2, . . . , 10, ahol c alkalmas valós szám.

66
Határozzuk meg c értékét! Milyen k pozitív egészekre teljesül, hogy P(ξ ≤ k) ≤ 1/2 ?
Jelenleg 1 felhasználó nézi ezt a kérdést.
0
Felsőoktatás / Matematika

Válaszok

1
Valamilyen értéket biztosan felvesz a valószínűségi változó, tehát az egyes valószínűségek összegének 1-nek kell lennie:
`sum_(k=1)^10 P(xi=k)=1`

`sum_(k=1)^10 ck=1`

`c sum_(k=1)^10 k=1`

`c*(10*11)/2=1`

`c =1/55`

Itt felhasználtam azt, hogy az első `k` pozitív egész szám összege `(k(k+1))/2` (teljes indukcióval vagy a számtani sorozat összegképlete alapján bizonyítható, de egyébként is hasznos ismerni).

A második kérdéshez:

`P(xi le k)``=``sum_(j=1)^k P(xi=j)``=``sum_(j=1)^k j/55``=``1/55 sum_(j=1)^k j``=``1/55 (k(k+1))/2``=``(k^2+k)/110`

Másodfokú egyenlőtlenséget kell tehát megoldanunk:

`(k^2+k)/110 le 1/2`

`k^2+k le 55`

`k^2+k -55 le 0`

A polinom két gyöke kb. -7,93 és 6,93, a főegyüttható pozitív, tehát a két gyök között negatív az érték. Viszont minket csak a pozitív egész `k`-k érdekelnek, tehát az 1, 2, 3, 4, 5 és 6 számok a megoldások.
Módosítva: 4 hónapja
1