Keresés

Keresendő kifejezés:

Toplista

Toplista
  • betöltés...

Segítség!

Ahhoz, hogy mások kérdéseit és válaszait megtekinthesd, nem kell beregisztrálnod, azonban saját kérdés kiírásához ez szükséges!

Kör egyenlete

132
Egy kör egyik átmérőjének végpontjai: A(-3; 2) és B(5; - 4). Írja fel ennek a körnek az egyenletét!
Jelenleg 1 felhasználó nézi ezt a kérdést.
#matek #kör #egyenlete
0
Középiskola / Matematika

Válaszok

3
2

25={x-1}^2+{y+1}^2
Kell levezetés?
2

Az a lényeg hogy meg kell határozni az A B szakasz hosszát..
AB/2 a kör sugara..
1 Két pont távolságának egyenlete:
A=(x,y). B=(x",y").
AB^2=(x-x")^2+(y-y")^2
Behelyettesítve:
A=(-3,2). És B=(5,-4)
AB^2=(-3-5)^2+(2-(-4))^2=(-8)^2+6^2=100
Ha AB^2=100 akkor AB=√100=10
A kör sugara egyenlő AB/2
R=5
2. Az AB szakasz felező pontja a kör közép pontja.
Itt a képlet a felező ponthoz..(jelöljük C-vel)
A={x,y} B={x",y"}
C={x-x",y-y"}×0.5+(x",y")
A={-3,2} B=(5,-4)
C={-3-5,2-(-4)}×0.5+(5,-4)=
{-8,6}×0.5+(5,-4)={-4,3}+(5,-4)=(1,-1)
Tehát a kör középpontja C={1,-1}
Egy C középpontú és R sugarú kör egyenlete:

C={u,v}
(X-u)^2+(Y+v)^2=R^2
Így tehát:
C={1,-1} R=5
(x-1)^2+(y-1)^2=5^2 (=25)
A képen a Gegebra nevű app ban ellenőriztem.. Érthető volt?
0