Keresés


Toplista

Toplista
  • betöltés...

Magántanár kereső

Ha szívesen korrepetálnál, hozd létre magántanár profilodat itt.
Ha diák vagy és korrepetálásra van szükséged, akkor regisztrálj be és írd meg itt, hogy milyen tantárgyban!

Nagyon szépen köszönöm a segítséget!

625
Oldja meg a x∙y=600 és a (x-10)∙(y+5) egyenletrendszert
Jelenleg 1 felhasználó nézi ezt a kérdést.
0
Középiskola / Matematika

Válaszok

1
Nem adtad meg a második szorzat értékét, így a feladványod nem tekinthető egyenletrendszernek. Kétismeretlenes másodfokú egyenletrendszert csinálunk belőle és megoldjuk paraméteresen. A Te feladatod annyi, hogy helyettesítsd be a végén a megoldásba. Legyen a hiányzó adat `a` és `a in RR`. Tehát `(x-10)(y+5)=a`, azaz `xy+5x-10y-50=a`.
`600+5x-10y-50=a` ebből kifejezhető `x`, ahonnan `x=frac{a-550+10y}{5}`. Ezt vissza helyettesítve az első egyenletbe kapunk `y`-ra egy paraméteres másodfokú egynletet: `(frac{a-550+10y}{5})y=600`. `2y^2+frac{(a-550)y}{5}-600=0`. Ahonnan `y_1=(sqrt(a^2 - 1100·a + 422500) - a + 550)/20` és `y_2= - (sqrt(a^2 - 1100·a + 422500) + a - 550)/20`. Végül `x_1=frac{a-550+10y_1}{5}=(sqrt(a^2 - 1100·a + 422500) + a - 550)/10` és `x_2=frac{a-550+10y_2}{5}=-(sqrt(a^2 - 1100·a + 422500) - a + 550)/10`. `a=110, 225, 350` és `500` esetén lesz `x` és `y` pozitív egész.
Módosítva: 2 éve
0