kazah
megoldása
5,
Tehát a kifejezések reciprokát keressük
a, `1/a`
b, `a/(a-b)`
c, `(a-b)/(a+b)`
d, `1/(x+1/y)` = `1/((xy+1)/y)` = `y/(xy+1)`
e, `1/(1/x+1/y)` = `1/((x+y)/(xy))` = `(xy)/(x+y)`
6,
a, = `(5*a)/(10*a)` = `5/10` = `1/2`
b, = `(3a^5)/(16x^5)` = `3/16*(a/x)^5`
c, = `(a*x*(x-a))/(x^2a^2)` = `(x-a)/(a*x)`
d, = `(7*(x+3)*(x-3))/(4x*(x+3)(x-3)*2*7)` = `1/(8x)`
e, = `((a+b)(a-b)*a^4)/(a^2*(a+b)(a+b))` = `(a^2*(a-b))/(a+b)`
f, = `(xy(x+y))/(xy(x+y))` = 1
g, = `(3*(a+b)(a-b)(a+b))/(5(a+b)(a+b)(a-b))` = `3/5`
h, = `(x+1)(x-1)((x+1-x+1+x^2-1)/((x+1)(x-1))` = `x^2+1`
i, = `-(cancel(5)*5*3*cancel(7)*x^cancel(4)*y^cancel(3)*cancel(a)*b)/(2*cancel(7)*cancel(5)*2*a^cancel(2)*cancel(x^3)*cancel(y^2))` = `-15/4*(xyb)/a`
0