kazah
válasza
1 éve
1,
`a_1=7`
`q=3`
`a_5=a_1*q^4` = `7*3^4` = 567
`a_(12)=a_1*q^(11)` = `7*3^(11)` = 1 240 029
2,
`a_4=a_1*q^3=48`
`a_6=a_1*q^5=192`
`a_6/a_4` = `(cancel(a_1)*q^5)/(cancel(a_1)*q^3)` = `q^2` = `192/48` = 4
I. `q_1` = 2
`a_1=a_4/q^3` = `48/2^3` = 6
II. `q_2=-2`
`a_1=a_4/q^3` = `48/(-2)^3` = -6
3,
`a_1=2048`
`q=1/2`
`a_n=a_1*q^(n-1)` = 0,0625
`2^(11)*(1/2)^(n-1)=1/16`
`(1/2)^(n-1)=2^(-4-11)`
`2^(1-n)=2^(-15)`
1-n = -15
-n=-16
n = 16
4,
`a_1=10`
`q=3`
`S_(10)` = `a_1*(q^(10)-1)/(q-1)` = `10*(3^(10)-1)/(3-1)` = 295 240
5,
`a_1=300`
`q=1.1`
a,
`a_(10)=a_1*q^(10-1)` = `300*1.1^9` = 707,38 m-t aszfaltoztak le a 10. napon.
b,
`S_n=a_1*(q^n-1)/(q-1)` = `300*(1.1^n-1)/(1.1-1)` = `300/0.1*(1.1^n-1)` = 21000
`1.1^n-1=7`
`1.1^n=8`
`n=(lg8)/(lg1.1)` `approx` 21,81
A 22. napon végeznek az aszfaltozással.
0
1
Kommentek